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Abstract
Purpose—To present a physical model for intraocular absorption of an inert gas used as a tamponade.

Methods—The absorption kinetics of gas in contact with the retinal surface is examined, including the
changing geometry of the shrinking gas bubble inside the eye.

Results—An analytic solution is derived that predicts how the bubble dimensions change with time,
yielding a formula for the lifetime of the gas bubble. Comparison to an experimental measurement shows
that the analytic solution accurately replicates the time evolution of the bubble geometry. The result is also
compared to an alternative exponential model, which does not predict a finite bubble lifetime.

Conclusions—Further experiments are needed to discriminate between the surface absorption and expo-
nential models.

 
Introduction
Published models1 of intraocular gas absorption assume
that the rate of change of intraocular gas volume is pro-
portional to the remaining gas volume V(t). The model
can be written dV/dt = −V / τ. The resulting exponential
decay of gas volume is used to determine a value of the
gas “half-life” τ from experimental observations of intra-
ocular gas absorption. This study describes an alterna-
tive model and compares it with patient observations
from personal experience (the author underwent a pars
plana vitrectomy with sulfurhexafluoride gas bubble
tamponade at Duke University Eye Center, July 2011).
The model assumes that the number of gas molecules
absorbed per unit time is proportional to amount of gas
in intimate contact with the retinal surface and the reti-
nal vasculature. It can be expressed in terms of a single
time-dependent geometric parameter that can be easily
tracked by a patient or caregiver as the gas bubble is
absorbed.

Method of Physical Model
The number of molecules absorbed per unit time by the
interior surface of the inner retina in contact with the gas
is described by a rate equation:

dN (t)
dt =

d ρ(t)V (t)
dt = − Pabvmρ(t)S (t), Eq 1

where ρ(t) is the number of molecules per unit volume,
N(t) =ρ (t)V(t) is the number of molecules in the gas
bubble, V(t) is the gas bubble volume, S(t) is the contact
area of the gas bubble with the retinal surface, Pab is the

Figure 1.  Gas bubble geometry with eye looking down.
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probability of absorption of a molecule at the gas-retina
interface, and vm is the speed of molecules in the gas.

Inside the gas bubble, the pressure does not change
appreciably as gas is absorbed. Consequently the molec-
ular number density ρ (t) of the gas is for practical pur-
poses time independent, which simplifies Equation 1.
What remains describes how the bubble dimensions
evolve over time:

dV (t)
dt = − PabvmS (t). Eq 2

The geometric parameters in this equation can be
expressed in terms of the angle ψ(t), defined in Figure 1.
(With an intraocular bubble, looking straight down, the
author measured ψ(t) using, for example, floor tiles as a
grid.)

Figure 1 shows the geometry when the eye is looking
straight down. The cap represents the gas bubble in a
sphere of radius r. The cap diameter is 2a, and its height
is h. Geometry of an isosceles triangle gives ψ=θ/2.

Figure 2.  Variation of angle ψ(t) with time.
 

Figure 3.  Variation of gas bubble volume with time.
 

Using trigonometry, the volume and surface area of the
bubble in contact with the retina can be expressed in
terms of the angle ψ. Then the rate equation can be writ-
ten in terms of the variable x = sin ψ:

1
S

dV
dt = 4r(x − x 3)

dx
dt = − Pabvm. Eq 3

Results
The differential equation can be integrated as in Equa-
tion 4

2x(t)2 − x(t)4 − (2x0
2 − x0

4) = −
Pabvm

r (t − t0) Eq 4

and solved to find ψ(t) as a function of time (the starting
time is t0=0), thus:

sinψ(t) = 1 − 1 − (2sin2ψ0 − sin4ψ0 −
Pabvmt

r ). Eq 5

From Equation 5 the lifetime of the bubble is

tbubblelife =
r

Pabvm
(2sin2ψ0 − sin4ψ0). Eq 6

The bubble lifetime depends inversely on Pab vm, increa-
ses with eyeball radius r and depends on how much gas
was initially put into the eye, measured by the starting
value ψ0.

Discussion
The author recorded his bubble’s size over time. It
abruptly vanished at 17.5 days. Estimating,

vm =
2kBT
MW

≈ 190m / sec, Eq 7

the gas absorption probability is as follows:

Pab ≈
1

vm

r
tbubblelife

= 4x10−11. Eq 8

Figure 2 compares the author’s observations to the sur-
face absorption and the exponential models. Figure 3
repeats the comparison expressed in terms of the gas
bubble volume computed from ψ(t). The surface absorp-
tion model tracks the observations quite well as the bub-
ble size diminishes in the last quarter of life. It rigor-
ously vanishes when t = tbubblelife, unlike the exponen-
tial model.

Additional experimental observations are needed with
sufficient precision to discriminate between the surface
and exponential absorption models.
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